

Approach to Electrolyte Abnormalities

Erasmus Erebu Okello

Anaesthesiologist | Critical Care Physician

Disclosures

I am a Critical Care Physician

Focus

- Recognition, pre-hospital and ED assessment & investigation
- Management and disposition
- Management of common complications

Special Requests

- Common electrolytes imbalances in cancer patients-Wilson
 Okot
- 2. Clinical features of various electrolytes-William Kinani
- Most common electrolyte imbalances, how to diagnose in a low resource setting and initial mgt of such cases-Mazzinga Herbert
- 4. Common electrolyte imbalances in critical care and management-Niringiye Gerald
- 5. Clinical signs to note without having lab results-Malinga Paddy
- Causes and predisposing factors, Preventive measures, Mgt,
 Complications-Paddy Mwebaza

HYPOTONIC CYTOLYSIS

lon	Intracellular	Extracellular	Nernst potential
Na ⁺	10	142	+58
K ⁺	140	4	-92
Cl-	4	103	-89
Ca ²⁺	0	2.4	+129
HCO ₃	10	28	-23

(mmol/l)

Mg²⁺ is co-factor for Na-K and SERCA pump. It also closes the K+ channel gate Po4³⁻ provides the P in ATP

Electrolyte Homeostatic Functions

Osmosis

Cell shape & size
 Enzyme Function

Acid-Base

Electrophysiology

- Heart
- Muscle
- Nerves

Pathophysiology

Extracellular Electrolytes

- Gain or loss from the body
 - Intake
 - Hormones
 - Drugs
 - Disease
- Fluid status changes
 - Intake
 - Hormones
 - Drugs
 - Disease

Intracellular Electrolytes

- Cellular shifts
 - Disease
 - Drugs
 - Hormones
- Excretion
 - Renal
 - GI
 - Meds

Clinical Presentation

Non-sensitive, non-specific

- Dead
- Cardiac Arrest
- Extreme Organ Dysfunction
- Part of another severe
 Disease
- Asymptomatic/Incidental Finding
- Spurious/Factitious

and treatment of crtical illness

Approach to Care

Spot

Save-Resuscitate

Sustain-Organ Support

Stabilize-Underlying mechanism

Salve/Palliate-Underlying dx

pecialiized humanand physical

Critical Care Vital organ support

Rehabilitate

Any care of critical illness Initial and sustained care

Potassium

- Isolated in 1807 from plant ash soaked in pots of water, hence pot-ash
- 140 mmol/L intracellular, 4 mmol/L extracellular
- Normal Serum Levels 3.5-4.5 mmol/L

and treatment of crtical illness

Approach to Care

Spot

Save-Resuscitate

Sustain-Organ Support

Stabilize-Underlying mechanism

Salve/Palliate-Underlying dx

Specialiized humanand physical

Critical

Vital organ support

of Initial and ess sustained care

Care

Any care of critical illness

Hyperkalemia

Pathophysiology

- **S**pot
- H&P
- Labs
 - K,Na,Mg,Ca,U&C
 - **CBC**
 - ABG,Glu
 - Urine lytes/Osmo
- **ECG**
 - Brady, Tented T-waves, absent P, Wide QRS, ST-T changes, Wid
 - Sine wave VT, VF, Asystole
- Targeted Dx for underlying Dx

- * 1 BP
- * EKG Changes
- * Dysrhythmias Irregular Rhythm
- * Abdominal Cramping
- * Diarrhea

Salve/Palliate

- Diagnose underlying disease
 - Transmembrane Shift: DM crisis, Acidosis, TLS, Rhabdo, Ischemia/infarction, Compartment Syndrome, Endocrine, meds
 - Decreased Elimination: AKI/CKD, Meds
 - Increased Intake: Meds, Diet, GI Bleed, Transfusion
- Continue Organ support as needed
 - Essential consults: ICU, Nephro, Surgery, Oncology
 - Disposition: ICU/HDU, Ward, OR

Hypokalemia

Spot

- H&P
- Labs
 - K,Na,Mg,Ca,U&C
 - CBC
 - ABG,Glu
- ECG
 - Long QT, U waves, ST-depression, Tiny T-waves
 - Tachycardia, Frequent PVCs, Polymorphic VT, VF, Asystole
- Targeted Dx for underlying Dx

Salve/Palliate

- Diagnose & treat underlying disease
 - Transmembrane Shift: Alkalosis, Drugs, Refeeding
 - Increased Elimination: Diuretics, Endocrine, Meds
 - Decreased Intake: Vomiting, Diarrhea, Starvation
- Continue Organ support as needed
 - Essential consults: ICU, Nephro, Surgery, Oncology
 - Disposition: ICU/HDU, Ward, OR

11 22.99 **Na** Sodium

Sodium

- Most abundant Extracellular Electrolyte
- 140 mmol/L Extracellular, 10 mmol/L Intracellular
- Normal Serum Levels 135-145 mmol/L
- Kept out by the Na-K ATPase
- Responsible for RMP, AP, Osmosis

Presence of symptoms

19suo

Identification of

- HA, nausea, confusion, seizures, Shock
- Acute vs. Chronic)

Evaluation of Dysnatremia

> framssassA amulov fo sufsts

 Edema, JVD, skin turgor, postural BP

edic Grotsin Cardiac, liver, renal disease, drug history

and treatment of crtical illness

Approach to Care

Spot

Save-Resuscitate

Sustain-Organ Support

Stabilize-Underlying mechanism

Salve/Palliate-Underlying dx

Specialiized humanand physical

Critical

Vital organ support

of Initial and ess sustained care

Care

Any care of critical illness

Hypernatremia

Pathophysiology

Spot

- H&P
- Labs
 - K,Na,Mg,Ca,U&C
 - CBC
 - ABG,Glu
 - Serum Osmo
 - Urine lytes/Osmo
- ECG/ECHO/CXR/Abdo US
- Targeted Dx for underlying Dx

Trying to die

- Status Epilepticus
- Altered LOC
- Shock-Due to cause

Sick like a dog

- •Hypovolemic
 - Dehydration
 - Orthostatic hypotension
- •Hypervolemic
 - Fluid overloaded
 - Hypertensive

Triggering Disease State

Salve/Palliate

- Essential consults: ICU, Nephro, Surgery,
 Oncology
- Disposition: ICU/HDU, Ward, OR

Diagnosis and Management of Hypernatremia. D5W indicates 5% dextrose in water; GI, gastrointestinal tract; NA, sodium; NaCl, sodium chloride; NaHCO3, sodium bicarbonate.

Source: Mayo Clinic Internal Medicine 8th

Hyponatremia

Pathophysiology

Spot

- H&P
- Labs
 - K,Na,Mg,Ca,U&C
 - CBC
 - ABG,Glu
 - Serum Osmo
 - Urine lytes/Osmo
- ECG/ECHO/CXR/Abdo US
- Targeted Dx for underlying Dx

Trying to die

- Status Epilepticus
- •Altered LOC
- Shock-Due to cause

Sick like a dog

- Hypovolemic
 - Dehydration
 - Orthostatic hypotension
- •Euvolemic
 - Underlying cause
- •Hypervolemic
 - Fluid overloaded
 - Hypertensive/Hypotensive

Triggering Disease State

Salve/Palliate

- Diagnose & treat underlying disease
 - Hypovolemia: Starvation|Diuretics|↓T4|↓Cortisol|CSWS
 - Euvolemic: SIADH
 - Hypervolemic: Sepsis|Heart Failure|AKI/CKD|Liver Dx|Tea & Toast|Beer Potomania
- Continue Organ support as needed
 - Essential consults: ICU, Nephro, Surgery, Oncology
 - Disposition: ICU/HDU, Ward, OR

Diagnosis and Management of Hyponatremia. GI indicates gastrointestinal tract; Na, sodium; SIAD, syndrome of inappropriate antidiuresis.

Source: Mayo Clinic Internal Medicine 8th

Osmotic Demyelination/Central Pontine Myelinolysis

- ↑ risk if Na increased by >12 mmol/L/d
- Delayed presentation 2–6 days or weeks
- Often irreversible.
 - Dysarthria
 - Dysphagia,
 - Paraparesis
 - Lethargy
 - Coma/seizures

- Hyopmagnesemia
- Renal insufficiency
- Sepsis
- · Blood transfusion
- Alkalosis
- Pancreatitis

- Drugs
 - Furosemide
 - Aminoglycoside
 - Digoxin
 - PPI
- Diarrhea
- EtOH abuse
- DM
- AMI

- Renal Insufficiency
- Hemolysis

Thank You

