Approach to Cardiac Arrhythmias

Kamoga Dickson
Department of Emergency Medicine
Makerere University College of Health Sciences

Outline

- Overview
- Classification of cardiac arrhythmias
- Approach to diagnosis EKG interpretation

Overview

Def: Cardiac arrhythmia refers to conditions in which the heart beats irregularly, too slowly, or too quickly.

Conduction Pathway

General Causes

- Electrolyte Imbalances
- Structural heart diseases such as HOCM, valvular heart diseases
- Myocardial ischemia
- Medication
- Stress
- Hormonal changes
- Use of recreational drugs

Clinical Presentation

- Breathlessness
- Dizziness, fainting or nearly fainting
- Fluttering in the chest, known as heart palpitations
- Chest pain
- Lightheadedness, sudden weakness
- Angina, or chest pain
- Confusion
- Difficulty exercising
- Shortness of breath
- Hypotension

Classification of arrhythmias

Mechanisms of Arrhythmias

Arrhythmias of sinus origin

- Ectopic rhythms
- Reentrant rhythms

- Conduction blocks
- Preexcitation syndromes

Arrhythmias of sinus origin

Sinus "arrhythmia"

Sinus tachycardia

Sinus bradycardia

Sinus Arrest - Junctional escape

Ectopic rhythms

abnormal rhythms that arise from somewhere other than the sinus node

A disorder of **impulse formation**

Enhanced automaticity

Non-sinus pacemakers are **stimulated to depolarize faster and faster**

Causes include:

- Beta adrenergic stimulation from inhaler therapies
- Stimulant drugs (cocaine, amphetamines)
- Digitalis toxicity
- Caffeine
- Alcohol

Reentrant rhythms

when ectopic pacemakers

re-excite previously depolarized fibers

before they would become depolarized

in the normal pathway

A disorder of **impulse transmission**

Supraventricular Arrhythmias

- Premature beats
- AV nodal reentrant tachycardia (AVNRT)
- Atrial flutter
- Atrial fibrillation
- Multifocal atrial tachycardia (MAT)
- Focal atrial tachycardia (FAT)

Premature beats

Atrial premature beat

Junctional premature beat

AV Nodal Reentrant Tachycardia (AVNRT) "SVT"

Absolutely regular

• Usual heart rate is 150-250 bpm

A Flutter

- Regular rhythm
- Reentry circuit around the Right atrium
- Saw-toothed partner of P-waves
- Narrow QRS
- Rapid atrial rate

Atrial fibrillation

Atrial activity is completely chaotic No P waves

• <u>Usually</u> 120-180 bpm (but can be slower or faster)

• AV node allows conduction in variable intervals, so *irregularly irregular* ventricular rate

Atrial fibrillation with rapid ventricular response (Afib with RVR)

Multifocal Atrial Tachycardia (MAT)

• Irregular rhythm at rate of 100-200 bpm

Common with severe lung disease

- P waves will vary in shape
- Diagnosis requires at least 3 different P wave morphologies

Wandering atrial pacemaker

- Irregular rhythm at rate of less than 100 bpm
- 2 or 3 beats of one pacemaker before moving to another

Focal Atrial Tachycardia (FAT)

Regular rhythm

- Rate of 100-200 bpm
- Abnormal P wave morphology (e.g. inverted in inferior leads)
- (P waves not always visible)

- Also known as "Paroxysmal Supraventricular Tachycardia"
- Also known as "Paroxysmal Atrial Tachycardia"

Focal Atrial Tachycardia (FAT)

Narrow QRS

Broad QRS

SUPRAVENTRICULAR

VENTRICULAR

Ventricular Arrhythmias

- Premature Ventricular Contractions
- Ventricular Tachycardia
- Ventricular Fibrillation
- Accelerated Idioventricular Rhythm
- Torsade de Pointes

Premature ventricular contraction (PVC)

- Most common ventricular arrhythmia
- QRS duration over 120 ms (or 3 small boxes)
- Isolated PVCs are common in normal hearts
- Can occur randomly
- Can alternate one sinus beat for every PVC (called bigeminy)
- Can alternate two sinus beats for every PVC (called trigeminy)

Premature ventricular contraction (PVC)

Ventricular tachycardia

• Regular, wide complex tachycardia

- Three or more PVCs is called Ventricular tachycardia
- Rate usually between 120 and 200 bpm
- May be slightly irregular

 Hemodynamic instability or sustained Vtach (longer than 30 seconds) are emergencies requiring immediate treatment

Monomorphic Ventricular tachycardia

Ventricular Fibrillation

- Irregular, chaotic deflections of varying amplitude
- Rate 150 to 500 per minute
- No identifiable P waves, QRS complexes, or T waves
- Amplitude decreases with duration (coarse VF —> fine VF)

Ventricular Fibrillation

- A preterminal event seen in dying hearts
- Most frequent rhythm in adults who experience sudden death

ECG jerks wildly (coarse vfib) or ripples gently (fine vfib)

Heart generates no cardiac output

Ventricular Fibrillation

Torsade de Pointes (twisting of the points)

- A form of **POLYMORPHIC** Ventricular Tachycardia
- QRS complexes spiral around baseline with differing axis and amplitude

- Usually seen in patients with long QT
- Prolonged QT is usually due to prolonged ventricular repolarization

• If a PVC falls on the prolonged T wave, Torsade de Pointes can initiate

Torsades de Pointes

Conduction Blocks

Conduction block

"any obstruction or delay of the flow of electricity along the normal pathways of electrical conduction"

Conduction Blocks

Sinus node block

AV block

Bundle branch block

AV Blocks

• First degree

- Second degree
 - Mobitz Type I
 - Mobitz Type II
- Third degree

PR interval longer than 1 large box

1° AV Block

"Measure" PR by observation (one large square).

PR remains consistently lengthened cycle-to-cycle.

Second-degree Mobitz TYPE I

= Wenckebach Block

Block within the AV node

Second-degree Mobitz TYPE I

= Wenckebach Block

Block within the AV node

Each atrial impulse meets a longer delay at the AV node than the one before until an impulse doesn't make it through

Each PR interval longer than prior until dropped QRS

Second-degree Mobitz TYPE II

Block <u>below</u> the AV node

Second-degree Mobitz TYPE II

Block below the AV node

- Dropped beat without progressive lengthening of PR interval
- Ratio of P waves to QRS complexes usually varies

Every PR interval identical until dropped QRS

Second-degree MOBITZ blocks

Type I (Wenckebach)

Type II

No treatment needed

Pacemaker needed in most cases

Third-degree AV block

= Complete Heart Block

block at AV node or lower

Third-degree AV block

= Complete Heart Block block at <u>AV node or lower</u>

AV Dissociation

Atria and Ventricles depolarize and contract independent of one another

P waves regular and QRS spacing regular no relationship between them

Bundle Branch Blocks

RIGHT Bundle Branch Block

- QRS wider than 120 ms
- Focus on Leads v1 and v2
 (overlying the right ventricle)
- Likely RSR' (R-S-R prime) in these leads
- Left lateral leads will have deep S wave

PreExcitation Syndromes

Wolff-Parkinson-White

EKG shows:

• PR interval less than 0.12 seconds

• QRS complex wider than 0.1 second due to delta wave

EKG changes + symptoms = WPW Syndrome

Often seen in WPW:

Supraventricular tachycardia and

Atrial fibrillation

Accessory pathway leads to reentrant circuit

Atrioventricular Reentry Tachycardia (AVRT)

Orthodromic AVRT (think orthodox) regular, narrow complex tachycardia

Antidromic atrioventricular tachycardia

Antidromic AVRT

regular, wide complex tachycardia

• END

• Thank you!