COMMON EMERGENCY PRESENTATIONS IN HIV

Isaac Turyasingura

CHANGING HIV LANDSCAPE

- Significant strides
- Largely due to successful HIV programing

- Still more work to be done?95-95-95 targets
- Funding

https://uac.go.ug/media/attachments/2024/01/23/hiv-aids-factsheet-2023.pdf

Advanced HIV disease persists

CD4 < 200
WHO stage III/IV defining
illness
Children < 5years

https://doi.org/10.1371/journal.pone.0226987

- ❖ High in-hospital mortality ~26%
- ❖ Nearly 2/3 of patients presenting with AHD are ART experienced

 Patients with AHD are more likely to present with emergencies

Primary HIV infection

Asymptomatic

Acute retroviral syndrome

Clinical stage 1

Asymptomatic

· Persistent generalized lymphadenopathy

Clinical stage 2

- Moderate unexplained weight loss
- · Recurrent respiratory infections
- Herpes Zoster
- Angular cheilitis

Clinical stage 3

- Unexplained severe weight loss
- Unexplained chronic diarrhoea for > 1 month
- Unexplained persistent fever for > 1 month
- · Persistent oral candidiasis
- Oral hairy leukoplakia
- Pulmonary Tuberculosis

Clinical stage 4

- HIV Wasting syndrome
- Pneumocystis pneumonia
- · Recurrent severe bacterial pneumonia
- · Chronic herpes simplex infection
- · Oesophageal candidiasis
- Extra-pulmonary Tuberculosis
- · Kaposi Sarcoma
- Cytomegalovirus
- Central Nervous system toxoplasmosis
- HIV Encephalopathy
- Extra-pulmonary Cryptococcus
- · Disseminated non-tuberculosis mycobacterial infection
- · Progressive multifocal leukoencephalopathy

- Recurrent oral ulceration
- · Papular pruritic eruptions
- Seborrhoeic dermatitis
- · Fungal nail infections
- Severe presumed bacterial infections
- · Acute necrotizing ulcerative stomatitis, gingivitis or peridontitis
- Unexplained anaemia
- Neutropenia
- Chronic Thrombocytopenia
- · Candida of trachea, bronchi or lungs
- Chronic cryptosporidiosis
- · Chronic isosporiasis
- · Disseminated mycosis
- Recurrent nontyphoidal Salmonella bacteraemia
- Lymphoma
- · Invasive cervical cancer
- · Atypical disseminated leishmaniasis
- Symptomatic HIV-associated nephropathy
- Symptomatic HIV-associated cardiomyopathy
- · Reactivation of American trypanosomiasis

· Progressive multifocal leukoencephalopathy

EMERGENCY PRESENTATIONS

- 1. Sepsis
- ❖ 2.3x increased risk of death
- How do you recognize sepsis in a patient?
- SIRS, MEWS
- qSOFA
- UVA

	Adapted MEWS*		qSOFA	qSOFA		UVA	
	Cut-off	Points	Cut-off	Points	Cut-off	Points	
Respiratory rate (breaths/min)	15–20	1	≥22	1	≥30	1	
	21-29 or <9	2					
	≥30	3					
Altered mental status (Glasgow Coma Scale <15)	Present	2	Present	1	Present	4	
Systolic blood pressure (mm Hg)	81–100	1	≤100	1	<90	1	
	71–80 or ≥200	2					
	≤70	3					
Temperature (°C)	≥38.5	1			<36	2	
	<35	2					
Heart rate (beats/min)	101-110 or 41-50	1			≥120	1	
	111-129 or <40	2					
	≥130	3					
Oxygen saturation (%)					<92	2	
HIV seropositivity					Present	2	
No de la la companya de la contra de NAT							

Variables and values in adapted MEWS, qSOFA and UVA scores

Moore CC, Hazard R, Saulters KJ, et al

Derivation and validation of a universal vital assessment (UVA) score: a tool for predicting mortality in adult hospitalised patients in sub-Saharan Africa *BMJ Global Health* 2017;**2:**e000344.

- What is the cause of sepsis in the HIV population?
- 1. M.tuberculosis
- 2. Non-typhoidal salmonellae
- Malaria
- 4. S. pneumoniae
- What do you do for a septic patient?

2. Respiratory Infections

- Cough, fever, dyspnea may progress to respiratory failure
- Aetiology; Mtb, bacterial, fungal
- Investigations: CXR key

- PJP high index of suscpicion
 - hard to diagnose ~ BAL sample, CXR
 - treat with high dose CTX, steroids for severe disease

3. Diarrhoea

- ❖ Usually chronic > 1month
- * Result into hypovolemic shock, electrolyte disorders esp. hyponatremia, hypokalemia
- IV fluid rescuscitation is key
- Aetiology;

CD4 Count	Types of Germs
Any CD4 count	Salmonella, Campylobacter, Tuberculosis, C. difficile, Giardia, Entamoeba, Strongyloides
<200 cells/mm ³	Cryptosporidium
<150 cells/mm ³	Histoplasma
<100 cells/mm ³	Isospora, Microsporidia
<50 cells/mm³	MAC, CMV

4. Neurological HIV emergencies

♦ Contribute ~25% of **AIDS related deaths**

Presentation; headache, seizures, altered mental status, focal neurologic deficits

- Are AIDS defining
- Meningitis most commonNeurologic complication

Etiology of meningitis in Adults

			Meningitis Pr			Prevalence	
Hospital Country Size infected		Bacterial / Pyogenic	Tuberculosis	Cryptococcal	Aseptic / Viral Meningitis		
Mulago and Mbarara ¹	Uganda	416	98%	4%	8%	59%	29%
GF Jooste ²	South Africa	1,737	96%	19%	13%	30%	38%
Queen Elizabeth Central ³	Malawi	263	77%	20%	17%	43%	20%
Harare Central & Parirenyatwa ⁴	Zimbabwe	200	90%	16%	12%	45%	28%
Pooled Average		2616	93%	9.3% (8.2-10.5%)	12.7% (11-14%)	37% (35-39%)	41% (40-43%)

¹ Durski K et al. *JAIDS* 2013; 63(3);e101-e108.

² Jarvis JN, et al. *BMC Infect Dis.* 2010; 10: 67.

Most CNS opportunistic infections result from reactivation of latent pathogens, including PML, toxoplasmic encephalitis,

CNS INFECTIONS IN HI

and primary CNS lymphoma

(IRIS) might unmask previously unsuspected CNS opportunistic infections when cART is started

Toxoplasmic encephalitis:

CD4<200

Fever, headache, altered mental status, and focal neurologic complaints or

- · MRI: ring enhancing Frontal, basal ganglia, parietal
- Toxoplasma gondii PCR nearly 100% specific and 50-80% sensitive
- Size lesions < 4cm
- · + mass effect/Edema

PML

CD4 < 100

Demyelinating disease caused by the JC virus

AMS, motor deficits (hemiparesis or monoparesis), limb ataxia, gait ataxia, and visual symptoms such as hemianopia and diplopia

- IMAGE:periventricular areas and the subcortical white matter.
- JC-virus PCR sensitivity variable at 50-90%, but specificity 90-100%

Primary CNS lymphoma

CD4 <100

Confusion, lethargy, memory loss, hemiparesis, aphasia, and/or seizures

IMAGE:

Enhancement:

- · multifocal lesions
- Periventricular, frontal, cerebellum, temporal
- Generally >3 cm diameter
- EBV analysis has a sensitivity of 80-90%, and a specificity approaching 100% for primary CNS lymphoma
- · + mass effect/Edema

Suspect in movement disorders

seizures

- -IMAGE:

Herpes simplex virus

· Hemorrhage, tuberculomas, or abscesses

<50% show basilar enhancement on CT</p>

Tuberculous meningitis

Variable, but <200

Hydrocephalus possible

CD4 Variable

Fever, headache, neck stiffness, vomiting, disorientation, memory loss, dysphasia, depression, confusion, personality change, seizures, visual hallucinations and photophobia

IMAGE:

· IMAGE:

- Enhancement- Inferomedial temporal lobes brainstem, cerebellum, diencephalon, and Periventricular regions; associated intracranial hemorrhage
- · CSF PCR sensitivity 100%, specificity 99.6%

Cytomegalovirus encephalitis

CD4 <50

Delirium, confusion, and focal neurologic abnormalities, rapidly progressive encephalopathy.

IMAGE:

- Enhancement: Periventricular
- PCR >90% sensitive and specific and <25% culture positive

Cryptococcal meningitis

CD4 <50

Headache, vomiting, visual changes, hearing loss, palsy of the abducens nerve, and impaired consciousness

IMAGE:

- · leptomeningeal enhancement, especially in patients with IRIS
- · Frequently "punched-out" cystic lesions
- · CSF: CSF cryptococcal antigen sensitivity 92% and specificity 83%;sensitivity of serum CrAg testing is comparable to CSF testing

PRINCIPLES OF HIV-ASSOCIATED CNS OPPORTUNISTIC INFECTIONS

- CNS opportunistic infections typically occur when the CD4-cell count is less than 200 cells per µL
- Diagnosis should be based on clinical presentation, temporal evolution, CSF, and radiographic features
- Multiple infections are present in 15% of cases and some infections might be revealed only after combination antiretroviral therapy is started
- Combination antiretroviral therapy should be started, modified, or continued with appropriate antimicrobial therapy
- Antimicrobial treatment is generally required until immune recovery (CD4cell count more than 200 cells per µL) is achieved with antiretroviral therapy

Others:

- CNS Syhpilis
- Aspergillosis
- Coccidiomycosis
- Histoplasmosis
- · VZV
- · HIV encephalopathy

Patient approach

Cinical suspicion of CNS infection in the HIV setting

• CD₄ count?

• If <200, AHD screen (Crag LFA, Urine LAM)

• Is an LP safe? ~do LP

Brain Imaging ~ CT/MRI

Management of CM

Phase		Drug Comments
	Newly Diagnosed Pat	tient
Induction Phase	Recommended	Preventing Amphotericin toxicity:
(2 weeks)	Shale high dose Amphotericin B liposomal (10mg/kg) AND	Flucytosine To prevent nephrotoxicity and hypokalaemia,
	(100mg/kg/day in four divided doses) + Fluconazole 1200mg	g/day for 14 he following:
	days	 Pre-hydration with 1L normal saline befo
	Or	starting the daily Amphotericin dose.
	Amphotericin B deoxycholate (1mg/kg/day) + Flucytosine	 Monitor serum potassium and creatinine
	(100mg/kg/day in four divided doses) for 1 week, followed b	by 1 week of levels at initiation and at least twice wee
	fluconazole (1200 mg/day for adults, 12 mg/kg/day for childr	fren and to detect changes in renal function.
	adolescents).	 Routine administration of 40 mEg/day of
	Or	potassium chloride can decrease the
	Fluconazole (1200 mg daily for adults, 12 mg/kg/day for child	dren and incidence of Amphotericin-related
	adolescents) + Flucytosine (100 mg/kg/day, divided into four	r doses per hypokalemia.
	day for 14 days.	 Consider alternate day Amphotericin if
	Or	creatinine is >3mg/dl.
	Amphotericin B deoxycholate (1mg/kg/day) + high-dose Fluc	conazole
	1200mg/day for 14 days	
I Aif Tasak		
Justify Text	Alternative:	
	Fluconazole 1200mg/day (or 6-12mg/kg/day in children)	
Consolidation	Fluconazole 800mg/day	Initiate ART 4–6 weeks after starting CM treatme
phase (8 weeks)	(or 6-12mg/kg/day in children and adolescents)	and there is clinical response to antifungal therap
Maintenance	Fluconazole 200mg/day	Criteria to stop after a minimum of 18 months of
Phase (18 months)	(or 6 mg/kg/day up to 200mg in children and adolescents)	maintenance phase:
		Adults: VL<1,000 copies/mm ³ & CD4 ≥ 200 or CD4
		≥200 (if viral load not available) after 12 and 18
		months
	on rifampicin increase Fluconazole dose by 50%	Children: If CD4>25% or viral suppressed

Phase	Drug	Comments

Managing Treatment Complications

- K < 3.3 mmol/l: increase potassium supplementation to 40mmol iv or 2 Tbl three times daily and monitor daily
- Creatinine >2-fold from baseline: increase pre-hydration to 1L 8-hourly. Consider temporary omission of an amphotericin dose and restart at 0.7mg/kg. If creatinine remains elevated discuss amphotericin-free regimen (Fluconazole 1200mg/day) with senior consultant.
- Elevated liver enzymes: Fluconazole

Relapse disease

Presents with a recurrence of symptoms of Meningitis and have a positive cerebrospinal fluid culture following a prior confirmed diagnosis of Cryptococcal Meningitis

- · Evaluate for drug resistance:
 - Send CSF to microbiology reference laboratory at the College of Health Sciences, Makerere University for culture and sensitivity testing.
- If there are no drug resistance results, re-initiate the induction therapy for two weeks and complete other phases of treatment
- Other options for treatment are a combination of Flucytosine (100mg/kg/day in four divided doses) and Fluconazole 800-1200mg daily. For patients on rifampicin increase Fluconazole dose by 50%

Adequate control of elevated CSF pressure

- control of increased intracranial pressure improves survival by 25% in persons with Cryptococcal Meningitis
- All patients with a CSF Pressure >250mm H_2O will need a therapeutic LP the following day to reduce the CSF pressure to <200 mm.
- In the absence of a manometer, one may use an IV giving set to create an improvised manometer measuring the height with a meter stick.
 Removing 20-30mL of CSF (even in the absence of a manometer) may be adequate to decrease CSF pressure. Most patients will need 2-3LPs during the induction phase.

Management of ART

How do you manage a new HIV patient

^{*} If on ART and failing current regimen, address advanced disease prior to ART regimen switch

THANK YOU!